Lymphoid Malignancies Think Tank
Therapeutic Opportunities in Lymphomas

Wyndham H. Wilson, MD, PhD
Bethesda, Maryland
Distribution of Lymphoma Subtypes

% of Total Cases

- Diffuse Large B-cell: 30.6%
- Follicular Lymphoma: 22.1%
- Marginal zone B-cell lymphoma, MALT: 13.7%
- Peripheral T-cell lymphomas: 6.7%
- CLL/SLL: 6.0%
- Mantle Cell Lymphoma: 6.7%
- Mediastinal Large B-cell Lymphoma: 7.6%
- Anaplastic Large Cell Lymphoma/T-null: 7.0%
Historical Outcome of Lymphoma Subtypes

- Aggressive “B” Cell Lymphomas
 - Diffuse Large B-cell Lymphoma (DLBCL)
 - Mantle cell lymphoma (MCL)
- Indolent “B” Cell Lymphomas
 - Follicular center cell (FCC)
Aggressive Lymphoma (DLBCL)

\[P = 0.35 \]

Cure \(\approx 33\% \)

Fisher Intergroup Trial (PFS)

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Patients at Risk</th>
<th>Relapses or Deaths</th>
<th>3-Year Estimate</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHOP</td>
<td>225</td>
<td>114</td>
<td>41%</td>
</tr>
<tr>
<td>m-BACOD</td>
<td>223</td>
<td>109</td>
<td>46%</td>
</tr>
<tr>
<td>ProMACE-CytaBOM</td>
<td>233</td>
<td>115</td>
<td>46%</td>
</tr>
<tr>
<td>MACOP-B</td>
<td>218</td>
<td>119</td>
<td>41%</td>
</tr>
</tbody>
</table>
Mantle Cell Lymphoma

Median survival $\cong 3$ years

Indolent Lymphoma (FCC)

Patient Survival With Indolent NHL

Median Survival 10 years

1987-1996 (n=668)
1976-1987 (n=513)
1960-1976 (n=195)

Courtesy of Sandra J. Horning, MD.
Strategies in DLBCL

- Empiric
- Targeted
 - Identify targets and reagents
 - Clinically assess and validate
 - Clinical trials
 - Evaluate molecular mechanisms of treatment failure
 - Build molecular prognostic models
 - Assess tumor biology ↔ treatment regimens
 - \textit{Rationally} develop new-generation treatments
Rituximab: An Anti-CD20 MAb
An Empiric Success

- Chimeric murine/human MAb
 - Variable light- and heavy-chain regions from murine anti-CD20 antibody
 - Linked to human IgGκ constant regions
LNH-98.5
Phase III CHOP v CHOP plus Rituximab

Cyclophosphamide 750 mg/m²
Doxorubicine 50 mg/m²
Vincristine 1.4 mg/m²
Prednisone 40 mg/m²/d x 5 d

3 weeks 8 cycles

CHOP
Rituximab 375 mg/m²
GELA study – Median follow-up 5 y

Event-Free Survival

R-CHOP

CHOP

p = .00002

Survival

R-CHOP

CHOP

p = .007

48%
Diffuse Large B-Cell Lymphoma
Molecular Prognostic Model of “CHOP” Failure
Proliferation Signature

Rosenwald et al. NEJM 346:1937, 2002
Ki-67 Analysis of Tumor Proliferation Survival Outcome With CHOP bolus

Ki-67 < 80%
Median survival 39 months

Ki-67 > 80%
Median survival 7 months

Blood 83:1460, 1994
Hypothesis

- Drug schedule increases tumor drug sensitivity

Doxorubicin

- Schedule dependent drugs
 - Doxorubicin
 - Etoposide
 - Vincristine
Hypothesis

- Drug schedule impacts drug sensitivity and mechanism
 - Cell cycle ↔ apoptotic threshold
 - Cell cycle ↔ Drug targets

![Graph showing correlation between Proliferation and Topoisomerase 2 Alpha with a correlation coefficient of 0.58](image)
Tumor Proliferation
Survival Outcome CHOP v DA-EPOCH

CHOP Bolus

DA-EPOCH Infusional

High Proliferation (Ki67 > 80%)
Low Proliferation (Ki67 < 80%)

Survival Probability

Years on study

P = 0.0004
P = 0.11
DA-EPOCH-R Infusional Survival Outcomes

PFS and OS: 83%

Untreated DLBCL (n=90)

Median Follow-up: 3 years
Diffuse Large B-Cell Lymphoma
Biology of “CHOP” Failure

Gene Expression Outcome Predictor

Overall Survival (years)

Probability

Proliferation

MHC Class II

GC B cell

Lymph Node

Signature

GCB DLBCL Type 3 DLBCL ABC DLBCL

Genes (n=4128)
Effect of GCB v ABC Subtypes on Outcome

CHOP *Bolus* Treatment

Diffuse Large B Cell Lymphoma Subgroups are Clinically Distinct

5-yr Survival

<table>
<thead>
<tr>
<th></th>
<th>GCB DLBCL</th>
<th>ABC DLBCL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Survival</td>
<td>60%</td>
<td>31%</td>
</tr>
</tbody>
</table>

$p = 7.9 \times 10^{-6}$
GCB v ABC DLBCL

- **BCL-2 impacts survival**
 - 25% v. 59% @ 8 yrs
 - (P < 0.001) CHOP-based

- **BCL-2 Expression**
 - Associated with ABC
 - ABC v GCB (p = 0.003)

(Blood 83:1460, 1994)
Effect of Rituximab on BCL-2

Clin Cancer Res 2001
Mar;7(3):709-23

BCL-2 Expression

CD20+

CD20−

BCL-2 Expression
Effect of Rituximab in BCL-2+ Tumors
NCI EPOCH v EPOCH-R

DA-EPOCH
- BCL-2+ (82%)
- BCL-2+ (50%)
Median Follow-up 60 mos
\[p_2 = 0.04 \]

DA-EPOCH-R
- BCL-2+ (83%)
- BCL-2− (71%)
Median Follow-up 23 mos
Effect of Rituximab in BCL-2+ Tumors
GELA CHOP v R-CHOP

CHOP
- bcl2 – (45)
- bcl2 + (92)
OS, P=0.05

R-CHOP
- bcl2 – (54)
- bcl2 + (101)
OS, P=0.71
GCB v ABC Survival Outcome
EPOCH-R Infusional

GCB: 89%
ABC: 69%

\[p_2 = 0.15 \]

Median Follow-up: 36 months
CALGB Phase III Randomized Study of R-CHOP v. DA-EPOCH-R with Microarray

ARM A: R-CHOP

ARM B: DA-EPOCH-R

Randomization

Tumor Biopsy

Blood Samples

Stage

Stage

Stage

Treatment completed if no change C5 to C7 staging

Repeat Blood Samples at Staging Proteomics/Pharmacogenomics

Time Line (weeks)
Targeting NF-κB in the ABC Subtype

Selective Expression of NF-kB Target Genes in Activated B-like DLBCL

<table>
<thead>
<tr>
<th>Gene</th>
<th>p value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cyclin D2</td>
<td>0.00001</td>
</tr>
<tr>
<td>IRF-4</td>
<td>0.00003</td>
</tr>
<tr>
<td>c-FLIP</td>
<td>0.00065</td>
</tr>
<tr>
<td>BCL-2</td>
<td>0.00308</td>
</tr>
<tr>
<td>CCR7</td>
<td>0.00665</td>
</tr>
<tr>
<td>IκB alpha</td>
<td>0.03110</td>
</tr>
</tbody>
</table>

Fold Relative Expression: 0.33, 0.67, 1.0, 1.5, 3.0
Bortezomib and NF-κB

- Bortezomib inhibits release of NF-κB dimers through inhibiting proteosome clearance of IκB

![Activation of the NF-kB Signaling Pathway](image)
Phase I/II Study of Bortezomib + EPOCH

- **Part A**
 - Bortezomib single agent

- **Part B**
 - DA-EPOCH + Bortezomib days 1 and 4
 - **Bortezomib Dose Escalated:**
 - Level I 0.5 mg/m²
 - Level II 1.0 mg/m²
 - Level III 1.5 mg/m²
 - Level IV 1.7 mg/m²
Phase I/II Study of Bortezomib + EPOCH

• Part A
 - Bortezomib single agent

• Part B
 - DA-EPOCH + Bortezomib days 1 and 4
 - Bortezomib Dose Escalated:
 - Level I 0.5 mg/m²
 - Level II 1.0 mg/m²
 - Level III 1.5 mg/m²
 - Level IV 1.7 mg/m²

ORR

6% (1/16)

23% (6/26)
Strategies in Mantle Cell Lymphoma

- Chemotherapy sensitive but persistent MRD
- Characterized by cell-cycle dysregulation

Proliferative Signal
- Cyclin D1 / cdk4
- Rb
- E2F → p14 ARF → mdm2
- Cyclin E / cdk2
- p27
- p21
- PROLIFERATION

DNA DS Breaks
- ATM 50%
- p53
- p16
- Methylated promoter
- More common in blastic

- Sequestration
- Deleted
- Deleted

APOPTOSIS
- BAX

Courtesy O. O’Connor
Tumor Proliferation

Variable Expression of Proliferation Signature Genes in Mantle Cell Lymphoma

Proliferation Signature Average

Mantle Cell Lymphoma Biopsies (n = 92)

CDC2
FLJ10517
tubulin-α
CENP-F
RAN
LC34790
FLJ10858
CIP2
HPRT
UHRF1
MCM2
HMG-2
DNA Pol E2
p55CDC
TFIIB
LC26191
Topoisomerase II α
PCNA
NF-IL6
DNA helicase PIF1
Tumor Proliferation Predicts Outcome

Quantitative Measurement of Proliferation Predicts Length of Survival Following Diagnosis of Mantle Cell Lymphoma

- Quartile 1: 6.7 yrs
- Quartile 2: 3.3 yrs
- Quartile 3: 2.3 yrs
- Quartile 4: 0.8 yrs

Overall Survival (years)
PFS Not Dependent on Proliferation Signature

EPOCH-R *Infusional*
Immune Eradication of MRD

• Idiotype Vaccine

Protocol Schema

- LN Bx
- EPOCH-R Begins
- EPOCH-R 6 cycles
- EPOCH-R Ends
- Id/KLH + GM-CSF s.c.
- Weeks
- n = 26

- EPOCH-R – Rituximab iv Day 1
 Continuous infusion Etoposide, Doxorubicin, Vincristine Days 1-5
 Cyclophosphamide iv Day 5
 Prednisone po Days 1-5
 Dose Adjustment

- Id-KLH+GM-CSF – 0.5 mg autologous Id + 0.5 mg KLH + 100 μg/m² GM-CSF
PFS and OS With Idiotype Vaccine

Progression-Free Survival

- Median follow-up 46 months
- Median PFS 22 months
- PFS 19% @ 4 years

Overall Survival

- OS 89% @ 4 years

- Median follow-up 46 months
Inhibition of Cell-Cycle Targets

- **Proteosome inhibitor**

Known Proteosome Substrates

<table>
<thead>
<tr>
<th>CLASS</th>
<th>PROTEIN</th>
<th>PROTEIN FUNCTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cyclins</td>
<td>Cyclins A, B, D E</td>
<td>Cell cycle</td>
</tr>
<tr>
<td></td>
<td>Cdk Inhibitors (p21 and p27)</td>
<td>Cyclin regulation</td>
</tr>
<tr>
<td>Tumor Suppressor</td>
<td>P53</td>
<td>Transcription factor</td>
</tr>
<tr>
<td>Oncogenes</td>
<td>C-fos/c-jun</td>
<td>Transcription factor</td>
</tr>
<tr>
<td></td>
<td>C-myc</td>
<td>Transcription factor</td>
</tr>
<tr>
<td></td>
<td>N-myc</td>
<td>Transcription factor</td>
</tr>
<tr>
<td>Inhibitory Proteins</td>
<td>IkB</td>
<td>Inhibitor of NF-kB</td>
</tr>
<tr>
<td></td>
<td>P130 / bcl-2</td>
<td>Inhibitor of E2F-1</td>
</tr>
<tr>
<td>Enzymes</td>
<td>Cdc25 phosphatase</td>
<td>CDK1/cyclin B phosphatase</td>
</tr>
<tr>
<td></td>
<td>Tyrosine aminotransferase</td>
<td>Tyrosine metabolism</td>
</tr>
</tbody>
</table>
Summary of Recent Data
Mantle Cell Lymphoma

<table>
<thead>
<tr>
<th>Study</th>
<th>N</th>
<th>CR/CRu</th>
<th>PR</th>
<th>ORR</th>
</tr>
</thead>
<tbody>
<tr>
<td>O’Connor et al (MSKCC) (ASH 2004)</td>
<td>26</td>
<td>3/2 (19%)</td>
<td>9 (38%)</td>
<td>54%</td>
</tr>
<tr>
<td>Strauss et al (St. Barts) (ASH 2004)</td>
<td>18</td>
<td>1 (6%)</td>
<td>6 (33%)</td>
<td>39%</td>
</tr>
<tr>
<td>Belch et al (NCIC) (ASH 2004)</td>
<td>28</td>
<td>1 (4%)</td>
<td>12 (43%)</td>
<td>46%</td>
</tr>
<tr>
<td>Goy et al (MDACC) (JCO 2005, ahead of print Dec 21, 2004)</td>
<td>29</td>
<td>6 (21%)</td>
<td>6 (21%)</td>
<td>41%</td>
</tr>
</tbody>
</table>
Summary of Recent Data

Indolent Lymphoma

<table>
<thead>
<tr>
<th>Study</th>
<th>N</th>
<th>CR/CRu</th>
<th>PR</th>
<th>ORR</th>
</tr>
</thead>
<tbody>
<tr>
<td>O’Connor (MSKCC) (ASH 2004)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Follicular</td>
<td>15</td>
<td>1/1 (13%)</td>
<td>7 (47%)</td>
<td>60%</td>
</tr>
<tr>
<td>SLL</td>
<td>5</td>
<td>0</td>
<td>1 (20%)</td>
<td>20%</td>
</tr>
<tr>
<td>MZL</td>
<td>6</td>
<td>0</td>
<td>3 (50%)</td>
<td>50%</td>
</tr>
<tr>
<td>Strauss et al (St. Barts)* (ASH 2004)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Follicular</td>
<td>11</td>
<td>0</td>
<td>2 (18%)</td>
<td>18%</td>
</tr>
<tr>
<td>Follicular</td>
<td>NA*</td>
<td>0/1</td>
<td>-</td>
<td>NA*</td>
</tr>
<tr>
<td>SLL</td>
<td>NA*</td>
<td>1/0</td>
<td>-</td>
<td>NA*</td>
</tr>
</tbody>
</table>
Inhibition of mTOR

Growth Factor

Cell Membrane

PI3K

Cell Growth

Regulate Translation of cell cycle regulatory proteins

PTEN

CCI-779/RAD001

mTOR

P70 S6K1

4E-BP1

Courtesy of O’Connor
Phase II Study CCI-779 (Temsirolimus) Relapsed Mantle Cell Lymphoma

<table>
<thead>
<tr>
<th>Arm A: N = 34</th>
<th>Response: ORR: 38%</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>CR – 1</td>
</tr>
<tr>
<td></td>
<td>PR – 12</td>
</tr>
<tr>
<td></td>
<td>PFS Median (range)</td>
</tr>
<tr>
<td></td>
<td>6.5 (2.9-8.3)</td>
</tr>
<tr>
<td></td>
<td>Toxicity (Grade 3):</td>
</tr>
<tr>
<td></td>
<td>Thrombocytopenia: 63%</td>
</tr>
<tr>
<td></td>
<td>Neutropenia: 23%</td>
</tr>
<tr>
<td>Arm B: N = 13</td>
<td>Response: ORR: 54%</td>
</tr>
<tr>
<td></td>
<td>CR – 1</td>
</tr>
<tr>
<td></td>
<td>PR – 6</td>
</tr>
<tr>
<td></td>
<td>PFS too early</td>
</tr>
<tr>
<td></td>
<td>6/7 responses ≥ 2 months</td>
</tr>
<tr>
<td></td>
<td>Toxicity (Grade 3):</td>
</tr>
<tr>
<td></td>
<td>Thrombocytopenia: 23%</td>
</tr>
<tr>
<td></td>
<td>Neutropenia: 23%</td>
</tr>
</tbody>
</table>

Inhibition of Histone Deacetylation

Deacetylated Histones
 ↓
Transcriptional Repression of Pre-Programmed Set of Genes
 ↓
Cell Growth
 ↓
Tumor Growth

Hyperacetylated Histone
 ↓
Transcriptional Activation of Pre-Programmed Set of Genes
 ↓
Cell Growth Arrest, Differentiation and/or Apoptosis
 ↓
Inhibition of Tumor Growth
Phase I Study of Suberoylanilide Hydroxamic Acid (SAHA) Histone Deacetylase (HDAC) Inhibitor

- Inhibition of Histone H3 Deacetylation by SAHA in PBMC

Cyclin-Dependent Kinase Inhibitor

- Flavopiridol

Derived by synthesis from *Dysoxylum binectariferum*, plant indigenous to India

CDK inhibitor: Directly binds to the ATP binding site at nanomolar concentrations (e.g. cyclin D1)

Flavopiridol in Mantle Cell Lymphoma

<table>
<thead>
<tr>
<th></th>
<th>No Prior Therapy</th>
<th>Prior Therapy</th>
<th>Total # Pts. (n=28)</th>
<th>Duration</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Complete Remission</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Partial Remission</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td>3.3</td>
<td>2.8-13.2</td>
</tr>
<tr>
<td>Stable Disease</td>
<td>7</td>
<td>13</td>
<td>20</td>
<td>3.4</td>
<td>1.4-10.3</td>
</tr>
<tr>
<td>POD</td>
<td>2</td>
<td>3</td>
<td>5</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Overall Response</td>
<td>2 / 11 [18%]</td>
<td>1 / 17 [6%]</td>
<td>24%</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Kouroukis et al., 2003
Immunomodulatory Drugs (IMiD)

- Inhibition of TNF-α Production in Monocytes
 - Mediator of inflammation
 - Pro-angiogenic
 - Induces cellular proliferation

- T-cell Costimulatory Activity
 - Increased activation/proliferation
 - Increased cytokine production (IL-2, IL-12 and TNF-α)
 - Shift toward Th1 (helper) phenotype
 - Enhance NK and LAK activity
Survival Outcomes in Mantle Cell Lymphoma Thalidomide and Rituximab

PFS; Median 20.4 months

Overall Survival

Prior Therapy

PFS Thalidomide + Rituximab

Lenalidomide (CC-5013, Revlimid™)

New-Generation ImiD

Thalidomide

Lenalidomide

Courtesy of O’Connor

Stirling D. Semin Oncol. 2001;28:602
Protocol Construction

Opportunity window
For activity biomarkers

Maximize cytotoxicity and therapeutic index

Targeted Agent
Obtain pre and post Bx after one cycle

Chemotherapy + Targeted agent

Post-CT+ TA Randomize

Targeted Agent

Observation

Neoadjuvant Eradicate RTC
Protocol Construction

Bortezomib
Obtain pre and post Bx after one cycle

DA-EPOCH-R +
Bortezomib

Post-CT+ TA
Randomize

Bortezomib
X 18 months

Observation

Biomarkers
Microarray
Proteomics

Endpoints
EFS
OS
MRD
Correlate bortezomib biomarkers with outcome

MRD Detection
Acknowledgements

Clinical Studies

John Janik, Kieron Dunleavy
Nicole Grant, Therese White
Martin Gutierrez, Upendra Hegde
Bruce Chabner, Michael Grossbard

Pharmacology Studies (Pediatric Branch)

Frank Balis, Diane Cole
Elizabeth Lowe

Metabolism Branch

Louis Staudt
Andreas Rosenwald
Adrian Wiestner

Laboratory of Pathology

Stefania Pittaluga
Elaine Jaffe
Mark Raffeld,
Mary-Alice Stetler-Stevenson