Role of leptin signaling in mammary tumor progression

Ruben R. Gonzalez-Perez, Ph.D.
Assistant Professor
Dept Microbiology, Biochemistry & Immunology,
Morehouse School of Medicine
Leptin (1994)

Pathological processes
- Angiogenesis
- Proliferation
- Inflammation
- Anti-apoptosis

Functions:
- Regulator of energy balance/appetite
- Reproductive process
 - Ovulation
 - Endometrial receptivity
 - Embryo implantation

Cancer
- endometriosis
- diabetes
- arthritis, etc.

2008

Elevated leptin levels are associated with increased incidence, poor outcome and worse prognosis of breast cancer
Leptin

- Small protein (16 kDa)
- Helical cytokine
- Product of the obese gene (ob)
- Secreted mainly by adipocytes

Leptin receptor (OB-R)

- Several isoforms
 - OB-Rb long isoform /functional

[Diagram of leptin receptor and leptin molecule]
Signaling pathways activated by leptin

Leptin → OB-R → cancer → JAK2-STAT3 → MAPK → PI-3K

PKC, AMPK, JNK, p38 kinase

VEGF, VEGFR2, IL-1β, IL-1R tl, LIF, LIFR, Cyclin D1, Bcl-2
Hypothesis:

Disruption of leptin signaling will negatively impact mammary tumor growth by decreasing leptin-induced expression of pro-angiogenic, proliferation and anti-apoptosis factors.
Designing Leptin Peptide Receptor Antagonists (LPrA)

G-CSF

Leptin

G-CSF R

(similar to OB-R)

(similar to G-CSF)
Designing Leptin Antagonists

LPrA-1

LPrA-2

H3

H3
Structural differences between LPrA-2 and LPrA-2Sc peptides (control)

Gonzalez, Unpublished
The LPrA effects were dose dependent.

The peptides solutions (0.15-0.3 nmoles) were assayed in the CAM assay.

Experiments were repeated 20 times.

In contrast to PBS (A) and LPrA-Sc (B) (arrows), LPrA-1 (C) and LPrA-2 (D) (arrowhead) inhibit the formation of capillaries.
Mammary cancer cells express OB-R

Human MCF-7
ER+

Human MDA-MB 231
ER-

Mouse 4T1
ER+

Negative Control

OB-R

A

B

C

D

E

F
LPrA2 inhibits leptin-induced adhesion and proliferation of breast cancer cells

<table>
<thead>
<tr>
<th>Treatments</th>
<th>4T1 Cell Adhesion (%)</th>
<th>MCF-7 Cell Adhesion (%)</th>
<th>MDA-MB231 Cell Adhesion (%)</th>
<th>4T1 Cell Proliferation (%)</th>
<th>MCF-7 Cell Proliferation (%)</th>
<th>MDA-MB231 Cell Proliferation (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>Leptin 3nM</td>
<td>186*</td>
<td>264*</td>
<td>133*</td>
<td>170*</td>
<td>155*</td>
<td>120*</td>
</tr>
<tr>
<td>Leptin + LPA-2 300nM</td>
<td>36</td>
<td>109</td>
<td>84</td>
<td>107</td>
<td>97</td>
<td>77</td>
</tr>
<tr>
<td>Leptin + LPA-2Sc 300nM</td>
<td>175*</td>
<td>230</td>
<td>142*</td>
<td>156*</td>
<td>168*</td>
<td>122*</td>
</tr>
</tbody>
</table>

*p<0.05; n = 5
Intraperitoneal injections

Half-life

UNCONJUGATED 3H-wLPrA2

Half-life ~ 1 h

PEGYLATED 3H-wLPrA2

Half-life ~ 18 h
Pharmacokinetics of PEG-3H-LPrA-2 in female mice

<table>
<thead>
<tr>
<th>Via</th>
<th>Dose (mg)</th>
<th>Dose (mg/Kg)</th>
<th>Vd liters/Kg</th>
<th>Cpo mg</th>
<th>Cpt mg</th>
<th>Kel mg/L</th>
<th>CL mg/Kg</th>
<th>T1/2 (h)</th>
</tr>
</thead>
<tbody>
<tr>
<td>i.p.</td>
<td>12.50</td>
<td>735.294</td>
<td>54.68</td>
<td>13.446</td>
<td>0.986</td>
<td>0.362</td>
<td>0.006</td>
<td>19.1</td>
</tr>
<tr>
<td>i.v.</td>
<td>5.00</td>
<td>151.888</td>
<td>103.23</td>
<td>1.471</td>
<td>1.570</td>
<td>0.011</td>
<td>10^{-4}</td>
<td>59.6</td>
</tr>
<tr>
<td>i.v.</td>
<td>2.50</td>
<td>75.396</td>
<td>255.26</td>
<td>0.295</td>
<td>0.141</td>
<td>0.010</td>
<td>3.9×10^{-5}</td>
<td>67.7</td>
</tr>
<tr>
<td>i.v.</td>
<td>1.25</td>
<td>38.320</td>
<td>408.71</td>
<td>0.093</td>
<td>0.042</td>
<td>0.010</td>
<td>2.4×10^{-5}</td>
<td>63.1</td>
</tr>
<tr>
<td>subdermal</td>
<td>5.00</td>
<td>250</td>
<td>561.79</td>
<td>0.004</td>
<td>0.004</td>
<td>0.00008</td>
<td>0.1×10^{-7}</td>
<td>323.8</td>
</tr>
<tr>
<td>vaginal</td>
<td>1.50</td>
<td>53.570</td>
<td>400.37</td>
<td>0.1338</td>
<td>0.025</td>
<td>0.0054</td>
<td>2×10^{-7}</td>
<td>128.8</td>
</tr>
</tbody>
</table>
PEG-wLPrA2 treatment does not affect food intake, body weight, glucose, insulin serum levels or HOMAX-index in mice.
In vivo studies

Syngeneic mouse model of MT

- m4T1 cells
- 100 µl twice daily
- LPrAs
- 0 - 15 - 21 days
- 2nd row mammary glands
- Right nipple
- ♀ BALB/c syngeneic sisters
LPrA2 delays the onset and reduces the growth of mouse 4T1-MT in a syngeneic model.

Treatment

Chemoprevention

PEG-LPrA2 and LPrA2 treatments decrease VEGF and VEGFR2 levels

MCF-7 tumor Onset

Ovariectomized & E2 supplemented SCID mice (8-weeks old)

MCF-7 inoculation

MT detection

Controls

MT detection

PEG-wLPrA2

PEG-wLPrA2

LPrA chemoprevention significantly delays the onset of MCF-7 MT in SCID mice.
Treatment of MT-ER+ in SCID mice

MCF-7 cells

PEG-wLPrA2 or Sc

0

7

21 days 50

2nd row mammary glands
Right nipple

♀ SCID ovariectomized mice
E2/cholesterol-capsule
PEG-wLPrA2 reduces growth of MCF-7 derived tumors in SCID mice.
PEG-wLPrA2 treatment decreases the levels of VEGF/VEGFR2 in MCF-7 mammary tumors.
PEG-wLPrA2 decreases IL-1 and IL-1R Rtl levels within MCF-7 MT

*p<0.05
PEG-wLPrA2 treatment decreases CD31, VEGFR2, CD68 (TAM), IL-1R tl, VEGF, leptin and OB-R expression within MCF-7 MT.
Human MT ER-: In vivo studies

MDA-MB231 cells

PEG-wLPrA2 or Sc

-7 0

2nd row mammary glands
Right nipple

♀ SCID mice

13 28 days
PEG-wLPrA2 decreased VEGF levels in MDA-MB231 MT

![Graph showing decreased VEGF levels in MT compared to blood with PEG-wLPrA2 treatment.](chart.jpg)

ELISA DETERMINATIONS
PEG-wLPrA2 decreased Bcl-2 levels in MDA-MB231 MT
PEG-wLPrA2 decreased IL-1 and IL-1R tI levels in MDA-MB231 MT
LPrA2 blocks the leptin canonical signaling pathways and SOCS3 down-regulation in 4T1 cells

Leptin activated the ERK 1/2/MAPK, PI-3K/AKT1 and JAK2/STAT3 pathways

SOCS-3 was upregulated by leptin and inhibited by LPrAs

Signaling intermediates involved in the leptin-induced levels of VEGF/VEGFR2 and Cyclin D1 in 4T1 cells

Luciferase reporter constructs of mouse VEGF promoter and 5'-end deletions

Mouse mammary cancer cells:
- 4T1
- MMT
- EM6

Leptin regulation of VEGF promoter in mouse mammary cancer cells

4T1

EM6

MMT

Full-length -HRE -HRE -HRE -HRE -HRE -SP1
-HRE -AP1 -AP1 -AP1 -AP1 -AP1
-AP2 -AP2 -AP2
-NFκB -NFκB
Leptin

4T1

HRE +
AP2 −
NFκB −
SP1 +

HRE +
AP2 −
NFκB −
SP1 +

HRE +
AP2 −
NFκB +
SP1 +

AP1 +
AP2 −
NFκB +

MMT

EM6

VEGF
Molecular mechanisms of leptin induction of pro-angiogenic/pro-inflammatory factors in breast cancer cells
LPrA decreases MT growth by inhibiting leptin-induced mitogenic, angiogenic and anti-apoptotic effects.

MT ER+ were more sensitive to LPrA effects than MT ER-
FINANCIAL SUPPORT

This work was supported in part by

CONRAD (CIG-02-87, 06-113 and 07-114)
The Susan G Komen Foundation for the Cure
The Cancer Research and Prevention Foundation
NIH/UAB SPORE Breast Cancer
COLLABORATORS

MSM

Yanbo Xu, Ph.D.
David Mann, Ph.D.
Salandre Cherfils
Amber Watters
Daniel Okenu, Ph.D.
Udai Singh, Ph.D.

The Cardiovascular Research Center
New Jersey Med School
Samuel J. Leibovich, Ph.D.

Vincent Center for Reproductive Biology (VCRB),
Massachusetts General Hospital,
Harvard Medical School

Bo R. Rueda, Ph.D.
Maureen P. Lynch, Ph.D.
Ramey D. Littell, M.D.
Aaron K. Styer, M.D.
Brian T. Sullivan
Hideo Sakamoto, Ph.D.
Takehiro Serikawa, MD, Ph.D.
Alexander B Olawaiye M.D.