Translational regulation of Myeloid Cell Differentiation: Novel Mechanisms and Players PDCD4, DAP5 and eIF2α

Bulent Ozpolat, M.D., Ph.D.

The University of Texas M.D. Anderson Cancer Center
Department of Experimental Therapeutics, Houston, TX
LEUKEMIA

- 33,440 new cases of leukemia will be diagnosed in the US this year
- 21,700 individuals will die of the disease
LEUKEMIA

↑ Immature malignant progenitor cells in circulation
BM infiltration & failure:
↓ RBC- Anemia
↓ WBC- Infections
↓ Platelets- Hemorrhage

Acute Leukemia

AML

% 20-30 survival with Standard Rx

Chronic Leukemia

CML

Gleevec
(STI-571)

ALL

CLL
Acute Promyelocytic Leukemia (APL)

- Type of Acute Myeloid Leukemia (M3-AML)
- The incidence is 3-fold higher in Hispanic/latinos
- Characterized by translocation (15;17) (q22;q21) that leads to expression of PML-RARα fusion receptor

Lin et al, TAG 1999
LEUKEMIA

Differentiation block

Leukemic blasts

Normal Hematopoiesis

HSC

G-CSF, GM-CSF, ATRA, IL-3

Granulocytes (Neutrophils, Basophils, Eosinophils)

Monocytes / Macrophages

RBC

Platelet

Mature Blood Cells

Mature Blood Cells

Granulocytes

Monocytes / Macrophages

RBC

Platelet

HSC
All-trans Retinoic Acid (ATRA) is used for the Differentiation therapy of APL

- A natural derivative of Vitamin A (Retinol)
- induces differentiation
- First line standard therapy in APL
ATRA treatment of Acute Promyelocytic leukemia (APL)

- ATRA alone induces Complete remission in 90-95% APL patients
Molecular mechanisms of ATRA induced differentiation is not well understood.

- 1300 increased
- 1700 decreased

Expression of ~3000 genes is altered.

- 85% inhibition in protein expression
GOAL:

Determine the molecular mechanism of ATRA induced terminal differentiation of myeloid cells.
ATRA induces differentiation in APL (NB4) cells

CD11b

<table>
<thead>
<tr>
<th>Time (h)</th>
<th>0</th>
<th>12</th>
<th>24</th>
<th>48</th>
<th>72</th>
</tr>
</thead>
<tbody>
<tr>
<td>% Differentiation (CD11b⁺)</td>
<td>0</td>
<td>10</td>
<td>20</td>
<td>30</td>
<td>50</td>
</tr>
</tbody>
</table>

CD11c

<table>
<thead>
<tr>
<th>ATRA (μM)</th>
<th>0</th>
<th>0.01</th>
<th>0.1</th>
<th>1</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>% Differentiation (CD11c⁺)</td>
<td>0</td>
<td>10</td>
<td>20</td>
<td>30</td>
<td>50</td>
</tr>
</tbody>
</table>
Differentiation in maturation resistant APL cells (NB4.R1) cannot undergo maturation by ATRA.
ATRA suppresses translational regulators during terminal differentiation of APL cells by Proteomics analysis

Harris & Ozpolat, Blood. 104 (5):1314-23. 2005
ATRA downregulates expression of translational regulators in APL cells

<table>
<thead>
<tr>
<th>Accession Number</th>
<th>Protein Name</th>
<th>Functional Classification</th>
<th>Mr (kDa) (theor)</th>
<th>pI</th>
<th>Peptides Sequenced</th>
<th>Peptides (8 h)</th>
<th>ATRA Treated/Non Treated</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q04637</td>
<td>Translational initiation factor 4G</td>
<td>protein synthesis</td>
<td>153</td>
<td>5.18</td>
<td>4</td>
<td>0.71</td>
<td>0.5 0.21 0.17</td>
</tr>
<tr>
<td>AAH19816</td>
<td>Heat Shock 70 kDa protein 8</td>
<td>chaperone</td>
<td>70.9</td>
<td>5.37</td>
<td>15</td>
<td>0.9</td>
<td>0.25 0.34* 0.39</td>
</tr>
<tr>
<td>P04765</td>
<td>Translation initiation factor 4A</td>
<td>protein synthesis</td>
<td>46.1</td>
<td>5.32</td>
<td>6</td>
<td>0.95</td>
<td>0.46 0.34 0.4</td>
</tr>
<tr>
<td>Q9Y230</td>
<td>48-kDa TATA box-binding protein</td>
<td>transcription</td>
<td>54.1</td>
<td>5.49</td>
<td>2</td>
<td>0.7</td>
<td>0.49 0.43 0.45</td>
</tr>
<tr>
<td>P06753-01</td>
<td>Tropomyosin alpha 3 chain</td>
<td>cellular organization</td>
<td>29</td>
<td>4.75</td>
<td>3</td>
<td>1.1*</td>
<td>0.61 0.5 0.50*</td>
</tr>
<tr>
<td>P42655</td>
<td>14-3-3 protein epsilon</td>
<td>signal transduction</td>
<td>29.1</td>
<td>4.63</td>
<td>3</td>
<td>0.83</td>
<td>0.56 0.35 0.41</td>
</tr>
<tr>
<td>Q92253</td>
<td>Translation initiation factor 6</td>
<td>protein synthesis</td>
<td>26.5</td>
<td>4.56</td>
<td>2</td>
<td>0.9</td>
<td>0.6 0.34 0.38</td>
</tr>
<tr>
<td>Q14974</td>
<td>Importin beta-1</td>
<td>cellular transport</td>
<td>97.2</td>
<td>4.68</td>
<td>5</td>
<td>1</td>
<td>1.8* 2 2.4</td>
</tr>
<tr>
<td>P50213</td>
<td>Isocitrate dehydrogenase</td>
<td>metabolism</td>
<td>39.5</td>
<td>6.47</td>
<td>2</td>
<td>N/A</td>
<td>2 3.8 4.3</td>
</tr>
<tr>
<td>P47755</td>
<td>F-actin capping protein alpha-2 subunit</td>
<td>structural</td>
<td>33</td>
<td>5.57</td>
<td>2</td>
<td>1</td>
<td>2.1 2.7 3.7</td>
</tr>
<tr>
<td>P47760-01</td>
<td>F-actin capping protein beta subunit</td>
<td>structural</td>
<td>30.6</td>
<td>5.69</td>
<td>4</td>
<td>.90*</td>
<td>1.6 2.1 3.8</td>
</tr>
<tr>
<td>P78417</td>
<td>Glutathione transferase omega 1</td>
<td>not defined</td>
<td>27.5</td>
<td>6.23</td>
<td>7</td>
<td>0.8</td>
<td>1.7 1.9 1.7</td>
</tr>
<tr>
<td>P18669</td>
<td>Phosphoglycerate mutase 1</td>
<td>glycolysis</td>
<td>28.6</td>
<td>6.75</td>
<td>7</td>
<td>1.6</td>
<td>6.5* 22 20</td>
</tr>
<tr>
<td>Q14019</td>
<td>Coactosin-like protein</td>
<td>cellular organization</td>
<td>15.9</td>
<td>5.54</td>
<td>2</td>
<td>1.1*</td>
<td>2.2 3.3 2.5</td>
</tr>
<tr>
<td>P29373</td>
<td>Retinoic acid-binding protein II</td>
<td>cellular defense</td>
<td>15.6</td>
<td>5.43</td>
<td>2</td>
<td>1.5</td>
<td>2.7 3.7 4.2</td>
</tr>
<tr>
<td>P27482</td>
<td>Calmodulin-related protein NB-1</td>
<td>signal transduction</td>
<td>16.7</td>
<td>4.3</td>
<td>2</td>
<td>1.1*</td>
<td>1.5 1.9* 1.7</td>
</tr>
<tr>
<td>P05387</td>
<td>60S acidic ribosomal protein P2</td>
<td>protein synthesis</td>
<td>11.7</td>
<td>4.42</td>
<td>4</td>
<td>N/A</td>
<td>2.5 3.9 4.7</td>
</tr>
<tr>
<td>P19105</td>
<td>Myosin regulatory light chain 2</td>
<td>cellular organization</td>
<td>19.7</td>
<td>4.67</td>
<td>2</td>
<td>1.8</td>
<td>3 4.1 4.4</td>
</tr>
<tr>
<td>P27482-01</td>
<td>Rho GDP-dissociation inhibitor 2</td>
<td>signal transduction</td>
<td>22.9</td>
<td>5.1</td>
<td>4</td>
<td>1.3</td>
<td>2 2.6 2.6</td>
</tr>
<tr>
<td>P29218</td>
<td>Inositol-(or 4)-monophosphatase</td>
<td>signal transduction</td>
<td>30.2</td>
<td>5.16</td>
<td>2</td>
<td>N/A</td>
<td>2.1* 2.9 2.5</td>
</tr>
</tbody>
</table>

All values are statistically significant (non-treated versus ATRA-treated), p < 0.05
Central hypothesis:

Translational suppression plays a role in ATRA-induced differentiation
Deregulation of mRNA translation can contribute to cell transformation and the malignant phenotype.

Translational factors are overexpressed in different cancer types:
- **eIF4E**: CML, breast, melanoma, neuroblastoma, colon, prostate, lung cancer
- **eIF4A**: Melanoma
- **eIF4G**: Melanoma
- **hnRNPK**: CML, Lung cancer (SCLC)
- **eIF2**: CML, colon
- **eEF1α**: Pancreas and prostate

Transfection of cells with eIFs leads to cell transformation:
- **eIF4E** (De Bendetti *al*, 1997)
- **eIF4G** (Fukuchi *et al*, 1997)
- **eIF2α** (Donze *et al*, 1995)
- **eEF1α** (Tatsuka *et al*, 1992)
Signaling pathways activated by Cytokines, Growth Factors or Stress Regulate Translational control

Mitogens, Cytokines, Growth Factors

MAPKK
- MEK
- ERK
- p38

MAPK
- Mnk
- Ras

PI3K
- AKT
- mTOR

Rapamycin

4E-BP1
- eIF4E

p70S6K
- S6K
- Ribosomal S6
- eIF4G
- eIF4B
- eIF4A

eEF2
- PKR

Translation ———> Growth & Proliferation
Hypothesis

Leukemia
APL

Translational activation
proliferation

Differentiation

ATRA

Translational Inhibition

?
Hypothesis:

ATRA suppresses translation by inducing translational inhibitors (PDCD4, DAP5 and p-eIF2α) during the differentiation.
PDCD4 tumor suppressor and DAP5 are novel inhibitors of translational initiation.

Translation “on”

Translation “off”

DAP5
PDCD4 (Programmed Cell Death 4)

• A novel tumor suppressor protein (Yang et al, 2003)
• Inhibits neoplastic transformation
• Specific inhibitor of translation initiation
 - inhibits helicase activity of eIF4A
• Its expression is downregulated in many tumors
ATRA induces PDCD4 expression during granulocytic differentiation of APL cells

<table>
<thead>
<tr>
<th>Time (h):</th>
<th>0</th>
<th>6</th>
<th>12</th>
<th>24</th>
<th>48</th>
<th>72</th>
</tr>
</thead>
<tbody>
<tr>
<td>ATRA (1 μM)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ATRA (0.1 μM)</td>
<td>6</td>
<td>12</td>
<td>24</td>
<td>48</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ATRA-induced PDCD4 expression

- **ATRA (1 μM)**
 - PDCD4 (time points: 0, 6, 12, 24, 48, 72)
 - β-Actin (constant)

- **ATRA (0.1 μM)**
 - PDCD4 (time points: 6, 12, 24, 48)
 - β-Actin (constant)

Graph showing relative PDCD4 expression

- X-axis: Time (h) from 0 to 72
- Y-axis: Relative PDCD4 protein expression
- ATRA (1 μM) data points: 0, 6, 12, 24, 48, 72
ATRA fails to induce PDCD4 in differentiation-resistant APL cells
ATRA induces marked PDCD4 expression in primary APL cells isolated from APL patients.
Knockdown of PDCD4 by siRNA inhibits ATRA-induced granulocytic differentiation of APL

CD11c inhibition

- TR
- Control siRNA
- PDCD4 siRNA

CD11b inhibition

- TR
- Control siRNA
- PDCD4 siRNA

P<0.05
DAP5
(Death Associated protein 5)
ATRA induces DAP5 in APL and AML cells

<table>
<thead>
<tr>
<th>Time (h):</th>
<th>0</th>
<th>24</th>
<th>48</th>
<th>72</th>
</tr>
</thead>
<tbody>
<tr>
<td>ATRA</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ATO</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

DAP5/p97

β-Actin

NB4

HL60

<table>
<thead>
<tr>
<th>Time (h):</th>
<th>0</th>
<th>24</th>
</tr>
</thead>
<tbody>
<tr>
<td>ATRA</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

DAP5/p97

β-Actin

Control

ATRA
ATRA-resistant APL (NB4.R1) cells do not express and fail to upregulate DAP5

<table>
<thead>
<tr>
<th></th>
<th>NB4</th>
<th>NB4.R1</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ATRA</td>
<td>ATO</td>
</tr>
<tr>
<td>0</td>
<td>24 48</td>
<td>24 48</td>
</tr>
</tbody>
</table>

DAP5/p97

Actin
Downregulation of DAP5 partially inhibits ATRA-induced granulocytic differentiation of APL cells
eIF2α
(Eukaryotic Initiation Factor 2 alpha)
ATRA induces phosphorylation (Ser51) of eIF2α during the granulocytic differentiation of APL cells.

ATRA (1 μM) vs. ATRA (0.1 μM)

- **Time (h):** 0 6 12 24 48 72 48 72
- **p-eIF2α**
- **eIF2α**
- **β-Actin**

ATO (0.4 μM)

- **Time (h):** 0 6 12 24 48 72
- **p-IF2α**
- **IF2α**
- **β-Actin**

NB+ATRA (1 μM)

- **Time (h):** 0 6 12 24 48 72
- **p-eIF2α/Actin**
- **p-eIF2α/eIF2α**

Relative p-eIF2α expression

- **Time (h):** 0 6 12 24 48 72
- **p-eIF2α/Actin**
- **p-eIF2α/eIF2α**
Knockdown of eIF2α blocks ATRA-induced differentiation of APL cells

% Differentiation (CD11b+)

- NT
- TR
- eIF2α siRNA
- PKR siRNA
- Control siRNA

ATRA
ATRA inhibits translation initiation during terminal granulocytic differentiation in APL

<table>
<thead>
<tr>
<th>Time (h):</th>
<th>0</th>
<th>24</th>
<th>48</th>
<th>72</th>
</tr>
</thead>
<tbody>
<tr>
<td>PDCD4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DAP5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>p(Ser51)-IF2α</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>p-4EB-P1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>β-Actin</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ATRA (1 μM)
ATRA-Induced translational control involves multiple mechanisms regulating cap-dependent and global translational control

PDCD4
DAP5
4E-BP1
Summary

• ATRA induces translational suppression by PDCD4, DAP5, 4E-BP1 and p-eIF2α during the granulocytic differentiation

• Induction of PDCD4 tumor suppressor protein is involved in granulocytic but not monocytic differentiation

• Inhibition of PDCD4, DAP5, eIF2 block ATRA-induced granulocytic differentiation

• ATRA-resistant cells are not able to upregulate translational inhibitors (PDCD4 and DAP5) and cannot translocate them into nucleus

• PI3K/Akt/mTOR pathway negatively regulates PDCD4 and DAP5 expression in AML and solid tumors
Conclusions

ATRA suppresses cap-dependent and global translational through multiple mechanisms during terminal granulocytic differentiation

PDCD4, DAP5 and eIF2α play a role in terminal differentiation program towards granulocytic lineage

Lack of or altered of translational control may be involved in disease pathogenesis (leukomogenesis) and resistance/relapses in APL patients
Future Goals:

1. To determine the role of translational regulators (PDCD4, DAP5, eIF2a) in response to therapy, resistance/relapse and survival in APL and AML patients.

2. To identify downstream molecular targets of ATRA-induced differentiation in APL patients samples.

3. To determine molecular mechanisms of ATRA resistance and relapses in APL patients using proteomics:
 - NB4 cell lines (Sensitive vs. ATRA-resistant)
 - Patient APL cells (Before treatment vs. the relapse)
Acknowledgements

M.D. Anderson Cancer Center
Gabriel Lopez-Berestein, M.D.
Ugur Akar, M.D., Ph.D.
Isabel Zorilla-Calancha, M.D.
Magali Barrilla, M.D.

Los Alamos National Laboratory
Xian Chen, Ph.D.
Michael Harris, Ph.D.

National Cancer Institute
Nancy Colburn, Ph.D.

University of Puerto Rico Cancer Center
Maribel Tirado-Gomez, M.D.

Ben Gurion University-Israel
Michael Danilenko, Ph.D.

Department of Leukemia
Steven Kornblau, M.D.
Elihu Estey, M.D.

Department of Statistics
Jianhua Hu, Ph.D.

Grant support: U54 (PI-GBL, Co-Inv BO)